Wednesday, 3 July 2013

real analysis - Let $f:[0,1]to mathbb R$ be a differentiable function



Let $f:[0,1]\to \mathbb R$ be a differentiable function with $f(0)=0$, $f(1)=1$. Prove that for every positive integer $n$, there exist $n$ distinct numbers $x_1,x_2,\cdots,x_n\in(0,1)$ such that

$$\frac{1}{n}\sum_{i=1}^n \frac{1}{f'(x_i)}=1.$$



My friend sent this problem, but I couldn't even work on the question.


Answer



Let $0=y_0

Then by mean value theorem, there are $x_i \in (y_{i-1}, y_i)$, $i=1, \cdots, n$ such that



$$ f'(x_i) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}}\Leftrightarrow \frac{1}{n} \frac{1}{f'(x_i)} = y_i - y_{i-1}$$




summing over $i$,



$$\frac{1}{n} \sum_{i=1}^n \frac{1}{f'(x_i)} = \sum_{i=1}^n (y_i - y_{i-1}) = 1-0 = 1.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...