Wednesday, 9 October 2013

calculus - How could I calculate this limit without using L'Hopital's Rule $lim_{xrightarrow0} frac{e^x-1}{sin(2x)}$?



I want to calculate the limit which is above without using L'hopital's rule ;



$$\lim_{x\rightarrow0} \frac{e^x-1}{\sin(2x)}$$


Answer




Using the fact that $$\lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ x } =1 } \\ \lim _{ x\rightarrow 0 }{ \frac { \sin { x } }{ x } =1 } $$ we can conclude that $$\\ \lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ \sin { 2x } } } =\frac { 1 }{ 2 } \lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ x } \frac { 2x }{ \sin { 2x } } } =\frac { 1 }{ 2 } $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...