Suppose we have a number N with x digits and we want to determine whether N is divisible by a number M with y digits such that x>y.
How do I go about this? I tried to use the first y digits of N and divide them by M but I'm not sure this is true for all N and M. Is there a general rule of thumb for problems like this?
Answer
The method below is good for small values y. Say, for y≤12.
And it is closely related to divisibility rules.
Explained via example:
let
N=1529773658514887677106240187604962388655195023566;
M=14159.
Since y=5, we group digits of the number N by 5:
N=01529773658514887677106240187604962388655195023566;
and rewrite N as
N=a9⋅1000009+a8⋅1000008+⋯+a1⋅100000+a0,
where 0≤aj<100000.
We'll find number v (0≤v<100000), for which
N≡v(mod
If v=0, then N is divisible by M.
So, we find remainders of 10000, 10000^2, \ldots, 10000^9 first:
\begin{array}{rcr} 100000 &\equiv &\color{darkred}{887} (\bmod 14159),\\ 100000^2\equiv 887\cdot 887=786769 &\equiv &\color{darkred}{8024} (\bmod 14159),\\ 100000^3\equiv 887\cdot 8024=7117288 & \equiv &\color{darkred}{9470} (\bmod 14159),\\ & \cdots & \\ 100000^8 &\equiv &\color{darkred}{11965} (\bmod 14159),\\ 100000^9 &\equiv &\color{darkred}{7864} (\bmod 14159). \end{array}
Therefore
\begin{array}{r}N \equiv 01529\cdot \color{darkred}{7864} \\ + 77365 \cdot \color{darkred}{11965} \\ + \cdots \quad\\ + 04962 \cdot \color{darkred}{9470} \\ + 38865 \cdot \color{darkred}{8024} \\ + 51950 \cdot \color{darkred}{887} \\ + 23566 \cdot \color{darkred}{1} \\ \equiv 0 (\bmod 14159). \end{array}
So, N is divisible by M.
Relation to divisibility rules:
if M=3, then y=1, and we note that
10\equiv 1 (\bmod 3);\\ 10^2\equiv 1 (\bmod 3);\\ 10^3\equiv 1 (\bmod 3);\\ \cdots
and for N=a_j\cdot 10^j + a_{j-1}\cdot 10^{j-1}+\cdots + a_1\cdot 10 + a_0
we have
N\equiv a_j + a_{j-1}+\cdots + a_1 + a_0 (\bmod 3)
(iif N is divisible by 3 then sum of its digits is divisible by 3).
No comments:
Post a Comment