Sunday, 26 January 2014

calculus - Evaluating limlimitsntoinftyensumlimitsnk=0fracnkk!



I'm supposed to calculate:



lim




By using W|A, i may guess that the limit is \frac{1}{2} that is a pretty interesting and nice result. I wonder in which ways we may approach it.


Answer



Edited. I justified the application of the dominated convergence theorem.



By a simple calculation,



\begin{align*} e^{-n}\sum_{k=0}^{n} \frac{n^k}{k!} &= \frac{e^{-n}}{n!} \sum_{k=0}^{n}\binom{n}{k} n^k (n-k)! \\ (1) \cdots \quad &= \frac{e^{-n}}{n!} \sum_{k=0}^{n}\binom{n}{k} n^k \int_{0}^{\infty} t^{n-k}e^{-t} \, dt\\ &= \frac{e^{-n}}{n!} \int_{0}^{\infty} (n+t)^{n}e^{-t} \, dt \\ (2) \cdots \quad &= \frac{1}{n!} \int_{n}^{\infty} t^{n}e^{-t} \, dt \\ &= 1 - \frac{1}{n!} \int_{0}^{n} t^{n}e^{-t} \, dt \\ (3) \cdots \quad &= 1 - \frac{\sqrt{n} (n/e)^n}{n!} \int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du. \end{align*}



We remark that




  1. In \text{(1)}, we utilized the famous formula n! = \int_{0}^{\infty} t^n e^{-t} \, dt.


  2. In \text{(2)}, the substitution t + n \mapsto t is used.

  3. In \text{(3)}, the substitution t = n - \sqrt{n}u is used.



Then in view of the Stirling's formula, it suffices to show that



\int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du \xrightarrow{n\to\infty} \sqrt{\frac{\pi}{2}}.



The idea is to introduce the function




g_n (u) = \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \mathbf{1}_{(0, \sqrt{n})}(u)



and apply pointwise limit to the integrand as n \to \infty. This is justified once we find a dominating function for the sequence (g_n). But notice that if 0 < u < \sqrt{n}, then



\log g_n (u) = n \log \left(1 - \frac{u}{\sqrt{n}} \right) + \sqrt{n} u = -\frac{u^2}{2} - \frac{u^3}{3\sqrt{n}} - \frac{u^4}{4n} - \cdots \leq -\frac{u^2}{2}.



From this we have g_n (u) \leq e^{-u^2 /2} for all n and g_n (u) \to e^{-u^2 / 2} as n \to \infty. Therefore by dominated convergence theorem and Gaussian integral,




\int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du = \int_{0}^{\infty} g_n (u) \, du \xrightarrow{n\to\infty} \int_{0}^{\infty} e^{-u^2/2} \, du = \sqrt{\frac{\pi}{2}}.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...