I'm not exactly sure how to get started computing the limit of the improper Riemann integral
lim
Using the result that \int_0^\infty \frac{\sin x}{x} dx = \pi/2, is there a way to interchange the limit and the integral to get \pi^2/4?
Answer
By the dominated convergence theorem
\lim_{\epsilon \to 0} \int_0^\pi \frac{\sin x}{x} \arctan\frac{x}{\epsilon}\,dx=\frac{\pi}{2}\int_0^\pi \frac{\sin x}{x}\,dx.
Now
\int_\pi^\infty \frac{\sin x}{x}\,\arctan\frac{x}{\epsilon}\,dx=\frac{\pi}{2}\int_\pi^\infty \frac{\sin x}{x}\,dx+\int_\pi^\infty \frac{\sin x}{x}\Bigl(\arctan\frac{x}{\epsilon}-\frac{\pi}{2}\Bigr)\,dx.
Let's stimate the second integral:
\Bigl|\arctan\frac{x}{\epsilon}-\frac{\pi}{2}\Bigr|=\int_{x/\epsilon}^\infty\frac{dt}{1+t^2}\le\frac{\epsilon}{x},
and
\int_\pi^\infty \Bigl|\frac{\sin x}{x}\Bigl(\arctan\frac{x}{\epsilon}-\frac{\pi}{2}\Bigr)\Bigr|\,dx\le\epsilon\int_\pi^\infty\frac{|\sin x|}{x^2}\,dx.
No comments:
Post a Comment