Thursday, 30 January 2014

calculus - Limit with Epsilon - Delta method

Prove using the $\epsilon - \delta$ definition of limits that $\lim_{x\to3} \frac{5}{4x-11} = 5$.




I know how the setup should be given $\epsilon \gt 0$ there exists a $\delta \gt 0$ such that $|x-3| \lt \delta$ and $|\frac{5}{4x-11} - 5| \lt \epsilon$ but I can't do the computation to help me find $\delta$ can someone guide me in the right direction?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...