How to show that $\frac{\sin(n)}{n}$
is $1$ as $n \rightarrow 0$? just hint.
Answer
Maclaurin series expansion of $\sin(n)$ is,
$$\sin(n) = n - \frac{n^3}{3!} +\frac{n^5}{5!}+... $$
Hence,
$$\frac{\sin(n)}{n} = 1-\frac{n^2}{3!} + \frac{n^4}{5!}+...$$
$$\lim_{n\to 0}\frac{\sin(n)}{n} = 1$$
No comments:
Post a Comment