Tuesday, 14 January 2014

calculus - How to show that $frac{sin(n)}{n}$ is $1$ as $n rightarrow 0$?











How to show that $\frac{\sin(n)}{n}$



is $1$ as $n \rightarrow 0$? just hint.


Answer



Maclaurin series expansion of $\sin(n)$ is,



$$\sin(n) = n - \frac{n^3}{3!} +\frac{n^5}{5!}+... $$




Hence,



$$\frac{\sin(n)}{n} = 1-\frac{n^2}{3!} + \frac{n^4}{5!}+...$$



$$\lim_{n\to 0}\frac{\sin(n)}{n} = 1$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...