Tuesday, 28 January 2014

integration - Integrate $ I(t)=int_0^infty left( frac{sin tx}{x} right)^n,mathrm d x$

How to integrate the following:
$$
I(t)=\int_0^\infty \left( \frac{\sin tx}{x} \right)^n\,\mathrm d x$$



I tried to using the Laplace transform:



\begin{align}
\mathcal{L}\left[I(t)\right]=\int_0^\infty \mathcal L\left[\left( \frac{\sin tx}{x} \right)^n\right]\,\mathrm d x
\end{align}




but I don't know what to do then.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...