Sunday, 12 January 2014

trigonometry - How to find the value of $cosleft (frac{pi }{28} right )-cosleft (frac{3pi }{28} right )+sinleft ( frac{5pi }{28} right )$?

Once , I do a problem $ \sum_{n=1}^{14} \cos\left ( \frac{n^{2}\pi }{14} \right )$
when angle modular by $28$ we've got



$2\left ( \cos\left (\frac{\pi }{14} \right ) - \cos\left (\frac{2\pi }{14} \right ) + \cos\left (\frac{3\pi }{14} \right ) + \cos\left (\frac{4\pi }{14} \right ) - \cos\left (\frac{5\pi }{14} \right ) - \cos\left (\frac{6\pi }{14} \right ) \right ) + 1$



and then using identity $\cos\left ( a \right ) - \cos\left ( b \right )$ and $\cos\left ( a \right ) + \cos\left ( b \right )$



leads to $2\sqrt{2} \left (\cos\left ( \frac{\pi }{28} \right ) -\cos\left ( \frac{3\pi }{28} \right )+\sin\left ( \frac{5\pi }{28} \right )\right ) + 1$




the final answer is $\sqrt{7}$ but I don't know how to compute $\left ( \cos\left ( \frac{\pi }{28} \right ) - \cos\left ( \frac{3\pi }{28} \right )+\sin\left ( \frac{5\pi }{28} \right )\right )$ by hands.



I appreciate for your helps.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...