Please help me to find a closed form for this integral:
I=∫10ln3(1+x)lnxxdx
I suspect it might exist because there are similar integrals having closed forms:
∫10ln3(1−x)lnxxdx=12ζ(5)−π2ζ(3)∫10ln2(1+x)lnxxdx=π424−16ln42+π26ln22−72ζ(3)ln2−4Li4(12)∫10ln3(1+x)lnxx2dx=34ζ(3)−634ζ(3)ln2+23π4120−34ln42−2ln32+3π24ln22−18Li4(12).
Thanks!
Answer
Start with integration by parts (IBP) by setting u=ln3(1+x) and dv=lnxx dx yields
I=−32∫10ln2(1+x)ln2x1+x dx=−32∫21ln2xln2(x−1)x dx⇒x↦1+x=−32∫112[ln2xln2(1−x)x−2ln3xln(1−x)x+ln4xx] dx⇒x↦1x=−32∫112ln2xln2(1−x)x dx+3∫112ln3xln(1−x)x dx−310ln5x|112=−32∫112ln2xln2(1−x)x dx+3∫112ln3xln(1−x)x dx−310ln52.
Applying IBP again to evaluate the red integral by setting u=ln2(1−x) and dv=ln2xx dx yields
∫112ln2xln2(1−x)x dx=13ln52+23∫112ln3xln(1−x)1−x dx.
For the simplicity, let
H(k)m(x)=∞∑n=1H(k)nxnnm⇒H(x)=∞∑n=1Hnxn,
Introduce a generating function for the generalized harmonic numbers for |x|<1
H(k)(x)=∞∑n=1H(k)nxn=Lik(x)1−x⇒H(x)=−ln(1−x)1−x
and the following identity
H(k)n+1−H(k)n=1(n+1)k⇒Hn+1−Hn=1n+1
Let us integrating the indefinite form of the blue integral.
∫ln3xln(1−x)1−x dx=−∫∞∑n=1Hnxnln3x dx=−∞∑n=1Hn∫xnln3x dx=−∞∑n=1Hn∂3∂n3[∫xn dx]=−∞∑n=1Hn∂3∂n3[xn+1n+1]=−∞∑n=1Hn[xn+1ln3xn+1−3xn+1ln2x(n+1)2+6xn+1lnx(n+1)3−6xn+1(n+1)4]=−ln3x∞∑n=1Hn+1xn+1n+1+ln3x∞∑n=1xn+1(n+1)2+3ln2x∞∑n=1Hn+1xn+1(n+1)2−3ln2x∞∑n=1xn+1(n+1)3−6lnx∞∑n=1Hn+1xn+1(n+1)3+6lnx∞∑n=1xn+1(n+1)4+6∞∑n=1Hn+1xn+1(n+1)4−6∞∑n=1xn+1(n+1)5= −∞∑n=1[Hnxnln3xn−xnln3xn2−3Hnxnln2xn2+3xnln2xn3 +6Hnxnlnxn3−6xnlnxn4−6Hnxnn4+6xnn5]= −H1(x)ln3x+Li2(x)ln3x+3H2(x)ln2x−3Li3(x)ln2x −6H3(x)lnx+6Li4(x)lnx+6H4(x)−6Li5(x).
Therefore
∫112ln3xln(1−x)1−x dx= 6H4(1)−6Li5(1)−[H1(12)ln32−Li2(12)ln32 +3H2(12)ln22−3Li3(12)ln22+6H3(12)ln2 −6Li4(x)ln2+6H4(x)−6Li5(x)]= 12ζ(5)−π2ζ(3)+38ζ(3)ln22−π4120ln2−14ln52 −6H4(12)+6Li4(12)ln2+6Li5(12).
Using the similar approach as calculating the blue integral, then
∫ln3xln(1−x)x dx=−∫∞∑n=1xn−1nln3x dx=−∞∑n=11n∫xn−1ln3x dx=−∞∑n=11n∂3∂n3[∫xn−1 dx]=−∞∑n=11n∂3∂n3[xnn]=−∞∑n=11n[xnln3xn−3xnln2xn2+6xnlnxn3−6xnn4]=∞∑n=1[−xnln3xn2+3xnln2xn3−6xnlnxn4+6xnn5]=6Li5(x)−6Li4(x)lnx+3Li3(x)ln2x−Li2(x)ln3x.
Hence
∫112ln3xln(1−x)x dx=π26ln32−218ζ(3)ln22−6Li4(12)ln2−6Li5(12)+6ζ(5).
Combining altogether, we have
I= π4120ln2−334ζ(3)ln22+π22ln32−1120ln52+6ζ(5)+π2ζ(3) +6H4(12)−18Li4(12)ln2−24Li5(12).
Continuing my answer in: A sum containing harmonic numbers ∞∑n=1Hnn32n, we have
H3(x)=12ζ(3)lnx−18ln2xln2(1−x)+12lnx[H2(x)−Li3(x)]+Li4(x)−π212Li2(x)−12Li3(1−x)lnx+π460.
Dividing (1) by x and then integrating yields
H4(x)=14ζ(3)ln2x−18∫ln2xln2(1−x)x dx+12∫lnxx[H2(x)−Li3(x)] dx+Li5(x)−π212Li3(x)−12∫Li3(1−x)lnxx dx+π460lnx=14ζ(3)ln2x+π460lnx+Li5(x)−π212Li3(x)−18∫ln2xln2(1−x)x dx+12[∞∑n=1Hnn2∫xn−1lnx dx−∫Li3(x)lnxx dx−∫Li3(1−x)lnxx dx].
Evaluating the red integral using the same technique as the previous one yields
∫ln2xln2(1−x)x dx=13ln3xln2(1−x)−23∫ln(1−x)ln3x1−x dx.
Evaluating the purple integral yields
∞∑n=1Hnn2∫xn−1lnx dx=∞∑n=1Hnn2∂∂n[∫xn−1 dx]=∞∑n=1Hnn2[xnlnxn−xnn2]=H3(x)lnx−H4(x).
Evaluating the green integral using IBP by setting u=lnx and dv=Li3(x)x dx yields
∫Li3(x)lnxx dx=Li4(x)lnx−∫Li4(x)x dx=Li4(x)lnx−Li5(x).
Evaluating the orange integral using IBP by setting u=Li3(1−x) and dv=lnxx dx yields
∫Li3(1−x)lnxx dx=12Li3(1−x)ln2x+12∫Li2(1−x)ln2x1−x dx.
Applying IBP again to evaluate the maroon integral by setting u=Li2(1−x) and
dv=ln2x1−x dx⇒v=2Li3(x)−2Li2(x)lnx−ln(1−x)ln2x,
we have
∫Li2(1−x)ln2x1−x dx=[2Li3(x)−2Li2(x)lnx−ln(1−x)ln2x]Li2(1−x)−2∫Li3(x)lnx1−x dx+2∫Li2(x)lnx1−x dx+∫ln(1−x)ln3x1−x dx.
We use the generating function for the generalized harmonic numbers evaluate the above integrals involving polylogarithm.
∫Lik(x)lnx1−x dx=∞∑n=1H(k)n∫xnlnx dx=∞∑n=1H(k)n∂∂n[∫xn dx]=∞∑n=1H(k)n[xn+1lnxn+1−xn+1(n+1)2]=∞∑n=1[H(k)n+1xn+1lnxn+1−xn+1lnx(n+1)k+1−H(k)n+1xn+1(n+1)2+xn+1(n+1)k+2]=∞∑n=1[H(k)nxnlnxn−xnlnxnk+1−H(k)nxnn2+xnnk+2]=H(k)1(x)lnx−Lik+1(x)lnx−H(k)2(x)+Lik+2(x).
Dividing generating function of H(k)(x) by x and then integrating yields
∞∑n=1H(k)nxnn=∫Lik(x)x(1−x) dxH(k)1(x)=∫Lik(x)x dx+∫Lik(x)1−x dx=Lik+1(x)+∫Lik(x)1−x dx.
Repeating the process above yields
∞∑n=1H(k)nxnn2=∫Lik+1(x)x dx+∫Lik(x)x(1−x) dxH(k)2(x)=Lik+2(x)+Lik+1(x)+∫Lik(x)1−x dx,
where it is easy to show by using IBP that
∫Li2(x)1−x dx=−∫Li2(1−x)x dx=2Li3(x)−2Li2(x)ln(x)−Li2(1−x)lnx−ln(1−x)ln2x
and
∫Li3(x)1−x dx=−∫Li3(1−x)x dx=−12Li22(1−x)−Li3(1−x)lnx.
Now, all unknown terms have been obtained. Putting altogether to (2), we have
H4(x)= 110ζ(3)ln2x+π4150lnx−π230Li3(x)−160ln3xln2(1−x)+65Li5(x)−15[Li3(x)−Li2(x)lnx−12ln(1−x)ln2x]Li2(1−x)−15Li4(x)−35Li4(x)lnx+15Li3(x)lnx+15Li3(x)ln2x−110Li3(1−x)ln2x−115Li2(x)ln3x−15H(3)2(x)+15H(2)2(x)+15H(3)1(x)lnx−15H(2)1(x)lnx+25H3(x)lnx−15H2(x)ln2x+115H1(x)ln3x+C.
The next step is finding the constant of integration. Setting x=1 to (3) yields
H4(1)=−π230Li3(1)+65Li5(1)−15Li4(1)−15H(3)2(1)+15H(2)2(1)+C3ζ(5)+ζ(2)ζ(3)=−π230Li3(1)+1930Li5(1)+35Li3(1)+CC=π4450+π25ζ(3)−35ζ(3)+3ζ(5).
Thus
H4(x)= 110ζ(3)ln2x+π4150lnx−π230Li3(x)−160ln3xln2(1−x)+65Li5(x)−15[Li3(x)−Li2(x)lnx−12ln(1−x)ln2x]Li2(1−x)−15Li4(x)−35Li4(x)lnx+15Li3(x)lnx+15Li3(x)ln2x−110Li3(1−x)ln2x−115Li2(x)ln3x−15H(3)2(x)+15H(2)2(x)+15H(3)1(x)lnx−15H(2)1(x)lnx+25H3(x)lnx−15H2(x)ln2x+115H1(x)ln3x+π4450+π25ζ(3)−35ζ(3)+3ζ(5)
and setting x=12 to (4) yields
H4(12)= ln5240−π236ln32+ζ(3)2ln22−π212ζ(3)+ζ(5)32−π4720ln2+Li4(12)ln2+2Li5(12).
Finally, we obtain
∫10ln3(1+x)lnxx dx= π22ζ(3)+9916ζ(5)−25ln52+π23ln32−214ζ(3)ln22−12Li4(12)ln2−12Li5(12),
which again matches @Cleo's answer.
References :
[1] Harmonic number
[2] Polylogarithm
No comments:
Post a Comment