Thursday, 6 March 2014

calculus - How to find largeint10fracln3(1+x)lnxxmathrmdx



Please help me to find a closed form for this integral:
I=10ln3(1+x)lnxxdx
I suspect it might exist because there are similar integrals having closed forms:

10ln3(1x)lnxxdx=12ζ(5)π2ζ(3)10ln2(1+x)lnxxdx=π42416ln42+π26ln2272ζ(3)ln24Li4(12)10ln3(1+x)lnxx2dx=34ζ(3)634ζ(3)ln2+23π412034ln422ln32+3π24ln2218Li4(12).
Thanks!


Answer



Start with integration by parts (IBP) by setting u=ln3(1+x) and dv=lnxx dx yields
I=3210ln2(1+x)ln2x1+x dx=3221ln2xln2(x1)x dxx1+x=32112[ln2xln2(1x)x2ln3xln(1x)x+ln4xx] dxx1x=32112ln2xln2(1x)x dx+3112ln3xln(1x)x dx310ln5x|112=32112ln2xln2(1x)x dx+3112ln3xln(1x)x dx310ln52.
Applying IBP again to evaluate the red integral by setting u=ln2(1x) and dv=ln2xx dx yields
112ln2xln2(1x)x dx=13ln52+23112ln3xln(1x)1x dx.




For the simplicity, let

H(k)m(x)=n=1H(k)nxnnmH(x)=n=1Hnxn,
Introduce a generating function for the generalized harmonic numbers for |x|<1
H(k)(x)=n=1H(k)nxn=Lik(x)1xH(x)=ln(1x)1x
and the following identity
H(k)n+1H(k)n=1(n+1)kHn+1Hn=1n+1




Let us integrating the indefinite form of the blue integral.
ln3xln(1x)1x dx=n=1Hnxnln3x dx=n=1Hnxnln3x dx=n=1Hn3n3[xn dx]=n=1Hn3n3[xn+1n+1]=n=1Hn[xn+1ln3xn+13xn+1ln2x(n+1)2+6xn+1lnx(n+1)36xn+1(n+1)4]=ln3xn=1Hn+1xn+1n+1+ln3xn=1xn+1(n+1)2+3ln2xn=1Hn+1xn+1(n+1)23ln2xn=1xn+1(n+1)36lnxn=1Hn+1xn+1(n+1)3+6lnxn=1xn+1(n+1)4+6n=1Hn+1xn+1(n+1)46n=1xn+1(n+1)5= n=1[Hnxnln3xnxnln3xn23Hnxnln2xn2+3xnln2xn3 +6Hnxnlnxn36xnlnxn46Hnxnn4+6xnn5]= H1(x)ln3x+Li2(x)ln3x+3H2(x)ln2x3Li3(x)ln2x 6H3(x)lnx+6Li4(x)lnx+6H4(x)6Li5(x).
Therefore
112ln3xln(1x)1x dx= 6H4(1)6Li5(1)[H1(12)ln32Li2(12)ln32 +3H2(12)ln223Li3(12)ln22+6H3(12)ln2 6Li4(x)ln2+6H4(x)6Li5(x)]= 12ζ(5)π2ζ(3)+38ζ(3)ln22π4120ln214ln52 6H4(12)+6Li4(12)ln2+6Li5(12).
Using the similar approach as calculating the blue integral, then
ln3xln(1x)x dx=n=1xn1nln3x dx=n=11nxn1ln3x dx=n=11n3n3[xn1 dx]=n=11n3n3[xnn]=n=11n[xnln3xn3xnln2xn2+6xnlnxn36xnn4]=n=1[xnln3xn2+3xnln2xn36xnlnxn4+6xnn5]=6Li5(x)6Li4(x)lnx+3Li3(x)ln2xLi2(x)ln3x.
Hence
112ln3xln(1x)x dx=π26ln32218ζ(3)ln226Li4(12)ln26Li5(12)+6ζ(5).
Combining altogether, we have




I= π4120ln2334ζ(3)ln22+π22ln321120ln52+6ζ(5)+π2ζ(3) +6H4(12)18Li4(12)ln224Li5(12).







Continuing my answer in: A sum containing harmonic numbers n=1Hnn32n, we have
H3(x)=12ζ(3)lnx18ln2xln2(1x)+12lnx[H2(x)Li3(x)]+Li4(x)π212Li2(x)12Li3(1x)lnx+π460.

Dividing (1) by x and then integrating yields
H4(x)=14ζ(3)ln2x18ln2xln2(1x)x dx+12lnxx[H2(x)Li3(x)] dx+Li5(x)π212Li3(x)12Li3(1x)lnxx dx+π460lnx=14ζ(3)ln2x+π460lnx+Li5(x)π212Li3(x)18ln2xln2(1x)x dx+12[n=1Hnn2xn1lnx dxLi3(x)lnxx dxLi3(1x)lnxx dx].
Evaluating the red integral using the same technique as the previous one yields
ln2xln2(1x)x dx=13ln3xln2(1x)23ln(1x)ln3x1x dx.
Evaluating the purple integral yields

n=1Hnn2xn1lnx dx=n=1Hnn2n[xn1 dx]=n=1Hnn2[xnlnxnxnn2]=H3(x)lnxH4(x).
Evaluating the green integral using IBP by setting u=lnx and dv=Li3(x)x dx yields
Li3(x)lnxx dx=Li4(x)lnxLi4(x)x dx=Li4(x)lnxLi5(x).

Evaluating the orange integral using IBP by setting u=Li3(1x) and dv=lnxx dx yields
Li3(1x)lnxx dx=12Li3(1x)ln2x+12Li2(1x)ln2x1x dx.
Applying IBP again to evaluate the maroon integral by setting u=Li2(1x) and
dv=ln2x1x dxv=2Li3(x)2Li2(x)lnxln(1x)ln2x,
we have

Li2(1x)ln2x1x dx=[2Li3(x)2Li2(x)lnxln(1x)ln2x]Li2(1x)2Li3(x)lnx1x dx+2Li2(x)lnx1x dx+ln(1x)ln3x1x dx.



We use the generating function for the generalized harmonic numbers evaluate the above integrals involving polylogarithm.




Lik(x)lnx1x dx=n=1H(k)nxnlnx dx=n=1H(k)nn[xn dx]=n=1H(k)n[xn+1lnxn+1xn+1(n+1)2]=n=1[H(k)n+1xn+1lnxn+1xn+1lnx(n+1)k+1H(k)n+1xn+1(n+1)2+xn+1(n+1)k+2]=n=1[H(k)nxnlnxnxnlnxnk+1H(k)nxnn2+xnnk+2]=H(k)1(x)lnxLik+1(x)lnxH(k)2(x)+Lik+2(x).




Dividing generating function of H(k)(x) by x and then integrating yields





n=1H(k)nxnn=Lik(x)x(1x) dxH(k)1(x)=Lik(x)x dx+Lik(x)1x dx=Lik+1(x)+Lik(x)1x dx.




Repeating the process above yields





n=1H(k)nxnn2=Lik+1(x)x dx+Lik(x)x(1x) dxH(k)2(x)=Lik+2(x)+Lik+1(x)+Lik(x)1x dx,




where it is easy to show by using IBP that





Li2(x)1x dx=Li2(1x)x dx=2Li3(x)2Li2(x)ln(x)Li2(1x)lnxln(1x)ln2x




and





Li3(x)1x dx=Li3(1x)x dx=12Li22(1x)Li3(1x)lnx.




Now, all unknown terms have been obtained. Putting altogether to (2), we have
H4(x)= 110ζ(3)ln2x+π4150lnxπ230Li3(x)160ln3xln2(1x)+65Li5(x)15[Li3(x)Li2(x)lnx12ln(1x)ln2x]Li2(1x)15Li4(x)35Li4(x)lnx+15Li3(x)lnx+15Li3(x)ln2x110Li3(1x)ln2x115Li2(x)ln3x15H(3)2(x)+15H(2)2(x)+15H(3)1(x)lnx15H(2)1(x)lnx+25H3(x)lnx15H2(x)ln2x+115H1(x)ln3x+C.
The next step is finding the constant of integration. Setting x=1 to (3) yields
H4(1)=π230Li3(1)+65Li5(1)15Li4(1)15H(3)2(1)+15H(2)2(1)+C3ζ(5)+ζ(2)ζ(3)=π230Li3(1)+1930Li5(1)+35Li3(1)+CC=π4450+π25ζ(3)35ζ(3)+3ζ(5).
Thus
H4(x)= 110ζ(3)ln2x+π4150lnxπ230Li3(x)160ln3xln2(1x)+65Li5(x)15[Li3(x)Li2(x)lnx12ln(1x)ln2x]Li2(1x)15Li4(x)35Li4(x)lnx+15Li3(x)lnx+15Li3(x)ln2x110Li3(1x)ln2x115Li2(x)ln3x15H(3)2(x)+15H(2)2(x)+15H(3)1(x)lnx15H(2)1(x)lnx+25H3(x)lnx15H2(x)ln2x+115H1(x)ln3x+π4450+π25ζ(3)35ζ(3)+3ζ(5)
and setting x=12 to (4) yields
H4(12)= ln5240π236ln32+ζ(3)2ln22π212ζ(3)+ζ(5)32π4720ln2+Li4(12)ln2+2Li5(12).







Finally, we obtain




10ln3(1+x)lnxx dx= π22ζ(3)+9916ζ(5)25ln52+π23ln32214ζ(3)ln2212Li4(12)ln212Li5(12),




which again matches @Cleo's answer.







References :



[1]  Harmonic number



[2]  Polylogarithm


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...