Sunday, 2 March 2014

calculus - Simpler way to compute a definite integral without resorting to partial fractions?



I found the method of partial fractions very laborious to solve this definite integral :
$$\int_0^\infty \frac{\sqrt[3]{x}}{1 + x^2}\,dx$$



Is there a simpler way to do this ?


Answer




Perhaps this is simpler.



Make the substitution $\displaystyle x^{2/3} = t$. Giving us



$\displaystyle \frac{2 x^{1/3}}{3 x^{2/3}} dx = dt$, i.e $\displaystyle x^{1/3} dx = \frac{3}{2} t dt$



This gives us that the integral is



$$I = \frac{3}{2} \int_{0}^{\infty} \frac{t}{1 + t^3} \ \text{d}t$$




Now make the substitution $t = \frac{1}{z}$ to get



$$I = \frac{3}{2} \int_{0}^{\infty} \frac{1}{1 + t^3} \ \text{d}t$$



Add them up, cancel the $\displaystyle 1+t$, write the denominator ($\displaystyle t^2 - t + 1$) as $\displaystyle (t+a)^2 + b^2$ and get the answer.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...