Sunday, 6 July 2014

elementary set theory - Build Bijection Function with Parameters

There are a,b $\in$ $\mathbb R$ such that a < b.
Show bijection function $f:[a,b) \to (0,1)$



I've tried something like:
$\\$ $f(n) =$ \begin{cases} n & \text{0 < $n$ < 1} \\ \frac{1}{n} & \text{$n$ > 1} \\ \frac{1}{2} & \text{$else$}

\end{cases}



But that function isn't injective.



can I get any clue please ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...