Solve equation: $\sqrt{t +9} - \sqrt{t} = 1$
I moved - √t to the left side of the equation $\sqrt{t +9} = 1 -\sqrt{t}$
I squared both sides $(\sqrt{t+9})^2 = (1)^2 (\sqrt{t})^2$
Then I got $t + 9 = 1+ t$
Can't figure it out after that point.
The answer is $16$
No comments:
Post a Comment