Let (an)n≥1 a sequence strictly increasing of real positive numbers such that lim, find \lim\limits_{n\rightarrow\infty} \sum_{k=1}^{n} \frac{a_k}{a_k+a_1+a_2+...+a_n}. I know this should be solved using Riemann integration, but my only significant progress wwas the finding of the partition 0\leq\frac{a_1}{a_1+...+a_n}\leq\frac{a_1+a_2}{a_1+...+a_n}\leq...\leq\frac{a_1+...+a_n}{a_1+...+a_n}=1 for the interval[0,1].
Subscribe to:
Post Comments (Atom)
real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Ok, according to some notes I have, the following is true for a random variable X that can only take on positive values, i.e P(X \int_0^...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment