Thursday, 7 April 2016

real analysis - Limit:$ limlimits_{nrightarrowinfty}left ( nbigl(1-sqrt[n]{ln(n)} bigr) right )$



I find to difficult to evaluate with $$\lim_{n\rightarrow\infty}\left ( n\left(1-\sqrt[n]{\ln(n)} \right) \right )$$ I tried to use the fact, that $$\frac{1}{1-n} \geqslant \ln(n)\geqslant 1+n$$
what gives $$\lim_{n\rightarrow\infty}\left ( n\left(1-\sqrt[n]{\ln(n)} \right) \right ) \geqslant \lim_{n\rightarrow\infty} n(1-\sqrt[n]{1+n}) =\lim_{n\rightarrow\infty}n *\lim_{n\rightarrow\infty}(1-\sqrt[n]{1+n})$$ $$(1-\sqrt[n]{1+n})\rightarrow -1\Rightarrow\lim_{n\rightarrow\infty}\left ( n\left(1-\sqrt[n]{\ln(n)} \right) \right )\rightarrow-\infty$$Is it correct? If not, what do I wrong?


Answer



Since it's so hard let's solve it in one line




$$\lim_{n\rightarrow\infty}\left ( n\left(1-\sqrt[n]{\ln(n)} \right) \right )=-\lim_{n\rightarrow\infty}\left(\frac{\sqrt[n]{\ln(n)}-1}{\displaystyle\frac{1}{n}\ln(\ln (n)) }\cdot \ln(\ln (n))\right)=-(1\cdot \infty)=-\infty.$$



Chris.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...