So right now I'm working on a discrete mathematics course and I've been having a bit of trouble figuring out how to prove certain equations using mathematical induction. I have very little trouble understanding how to use mathematical induction to prove equations such as this: $1 + 2 ... + n = \dfrac{n(n+1)}2$ for all integers $n \ge 1$. But when it comes to less straightforward proofs such as the one I am currently working on: "Prove that $2n + 1 \le 2^n$ for $n \ge 3$" give me real trouble. Are there any tips for proofs like this any could share? Any help is greatly appreciated.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment