Wednesday, 7 September 2016

calculus - How to solve the limit without graphing $lim_{xtoinfty} frac{x}{sqrt[]{ x^2+1 }}$

What I have tried so far is this



The function $$\lim_{x\to\infty} \frac{x}{\sqrt[]{ x^2+1 }}$$



Seems to be in the Indeterminate Form of $$\frac{\infty}{\infty}$$



Yet the limit when solved using L' Hopital's rule is $$\lim_{x\to\infty} \frac{1}{(\frac{x}{\sqrt[]{x^2+1}})}$$
which equals $$\frac{1}{undefined}$$




but the limit equals 1 not undefined.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...