I need to calculate the following integral:
∫∞0((2 S(x)−1)2+(2 C(x)−1)2)2x dx,
where
S(x)=∫x0sinπz22dz,
C(x)=∫x0cosπz22dz
are the Fresnel integrals.
Numerical integration gives an approximate result 0.31311841522422385... that is close to 16log2−8π2, so it might be the answer.
Answer
Step 1. Reduction of the integral
Let I denote the integral in question. With the change of variable v=πx22, we have
I=1π∫∞0{(1−2C(x))2+(1−2S(x))2}2dv
where x=√2v/π is understood as a function of v. By noting that
1−2S(x)=√2π∫∞vsinu√uduand1−2C(x)=√2π∫∞vcosu√udu,
we can write I as
I=4π3∫∞0|A(v)|4dv
where A(v) denotes the function defined by
A(v)=∫∞veiu√udu.
Step 2. Simplification of |A(v)|2.
Now we want to simplify |A(v)|2. To this end, we note that for ℜu>0,
1√u=1Γ(12)Γ(12)u1/2=1√π∫∞0e−ux√xdx=2√π∫∞0e−ux2dx
Using this identity,
A(v)=2√π∫∞veiu∫∞0e−ux2dxdu=2√π∫∞0∫∞ve−(x2−i)ududx=2eiv√π∫∞0e−vx2∫∞0e−(x2−i)ududx=2eiv√π∫∞0e−vx2x2−idx.
Thus by the polar coordinate change (x,y)↦(r,θ) followed by the substitutions r2=s and tanθ=t, we obtain
|A(v)|2=A(v)¯A(v)=4π∫∞0∫∞0e−v(x2+y2)(x2−i)(y2+i)dxdy=4π∫∞0∫π20re−vr2(r2cos2θ−i)(r2sin2θ+i)dθdr=2π∫∞0∫π20e−vs(scos2θ−i)(ssin2θ+i)dθds=2π∫∞0e−vss∫π20(1scos2θ−i+1ssin2θ+i)dθds=2π∫∞0e−vss∫∞0(1s−i(t2+1)+1st2+i(t2+1))dtds.
Evaluation of the inner integral is easy, and we obtain
|A(v)|2=2∫∞0e−vssℜ(i√1+is)ds.
Applying (2) again, we find that
|A(v)|2=2∫∞0e−vssℜ(i√π∫∞0e−(1+is)u√udu)ds=2√π∫∞0e−vss∫∞0e−usin(su)√ududs=2√π∫∞0e−u√u∫∞0sin(su)se−vsdsdu=2√π∫∞0e−u√uarctan(uv)du=4√v√π∫∞0e−vx2arctan(x2)dx(u=vx2)
Here, we exploited the identity
∫∞0sinxxe−sxdx=arctan(1s),
which can be proved by differentiating both sides with respect to s.
Step 3. Evaluation of I.
Plugging (3) to (1) and applying the polar coordinate change, I reduces to
I=64π4∫∞0∫∞0∫∞0ve−v(x2+y2)arctan(x2)arctan(x2)dxdydv=64π4∫∞0∫∞0arctan(x2)arctan(x2)(x2+y2)2dxdy=64π4∫π20∫∞0arctan(r2cos2θ)arctan(r2sin2θ)r3drdθ=32π4∫π20∫∞0arctan(scos2θ)arctan(ssin2θ)s2dsdθ.(s=r2)
Now let us denote
J(u,v)=∫∞0arctan(us)arctan(vs)s2ds.
Then a simple calculation shows that
∂2J∂u∂vJ(u,v)=∫∞0ds(u2s2+1)(v2s2+1)=π2(u+v).
Indeed, both the contour integration method or the partial fraction decomposition method work here. Integrating, we have
J(u,v)=π2{(u+v)log(u+v)−ulogu−vlogv}.
Plugging this to (4), it follows that
I=−64π3∫π20sin2θlogsinθdθ=−16π3∂β∂z(32,12)
where β(z,w) is the beta function, satisfying the following beta function identity
β(z,w)=2∫∞0sin2z−1θcos2w−1θdθ=Γ(z)Γ(w)Γ(z+w).
Therefore we have
I=16π3Γ(32)Γ(12)Γ(2){ψ0(2)−ψ0(32)}=8π2∫10√x−x1−xdx=8(2log2−1)π2,
where ψ0(z)=Γ′(z)Γ(z) is the digamma function, satisfying the following identity
ψ0(z+1)=−γ+∫101−xz1−xdx.
No comments:
Post a Comment