Saturday, 10 September 2016

special functions - An integral involving Fresnel integrals inti0nftyleft(left(2S(x)1right)2+left(2C(x)1right)2right)2xmathrmdx,



I need to calculate the following integral:
0((2 S(x)1)2+(2 C(x)1)2)2x dx,
where
S(x)=x0sinπz22dz,
C(x)=x0cosπz22dz
are the Fresnel integrals.



Numerical integration gives an approximate result 0.31311841522422385... that is close to 16log28π2, so it might be the answer.



Answer




Step 1. Reduction of the integral




Let I denote the integral in question. With the change of variable v=πx22, we have



I=1π0{(12C(x))2+(12S(x))2}2dv



where x=2v/π is understood as a function of v. By noting that




12S(x)=2πvsinuuduand12C(x)=2πvcosuudu,



we can write I as



I=4π30|A(v)|4dv



where A(v) denotes the function defined by



A(v)=veiuudu.








Step 2. Simplification of |A(v)|2.




Now we want to simplify |A(v)|2. To this end, we note that for u>0,



1u=1Γ(12)Γ(12)u1/2=1π0euxxdx=2π0eux2dx



Using this identity,



A(v)=2πveiu0eux2dxdu=2π0ve(x2i)ududx=2eivπ0evx20e(x2i)ududx=2eivπ0evx2x2idx.



Thus by the polar coordinate change (x,y)(r,θ) followed by the substitutions r2=s and tanθ=t, we obtain



|A(v)|2=A(v)¯A(v)=4π00ev(x2+y2)(x2i)(y2+i)dxdy=4π0π20revr2(r2cos2θi)(r2sin2θ+i)dθdr=2π0π20evs(scos2θi)(ssin2θ+i)dθds=2π0evssπ20(1scos2θi+1ssin2θ+i)dθds=2π0evss0(1si(t2+1)+1st2+i(t2+1))dtds.



Evaluation of the inner integral is easy, and we obtain



|A(v)|2=20evss(i1+is)ds.



Applying (2) again, we find that



|A(v)|2=20evss(iπ0e(1+is)uudu)ds=2π0evss0eusin(su)ududs=2π0euu0sin(su)sevsdsdu=2π0euuarctan(uv)du=4vπ0evx2arctan(x2)dx(u=vx2)



Here, we exploited the identity



0sinxxesxdx=arctan(1s),



which can be proved by differentiating both sides with respect to s.








Step 3. Evaluation of I.




Plugging (3) to (1) and applying the polar coordinate change, I reduces to



I=64π4000vev(x2+y2)arctan(x2)arctan(x2)dxdydv=64π400arctan(x2)arctan(x2)(x2+y2)2dxdy=64π4π200arctan(r2cos2θ)arctan(r2sin2θ)r3drdθ=32π4π200arctan(scos2θ)arctan(ssin2θ)s2dsdθ.(s=r2)



Now let us denote



J(u,v)=0arctan(us)arctan(vs)s2ds.




Then a simple calculation shows that



2JuvJ(u,v)=0ds(u2s2+1)(v2s2+1)=π2(u+v).



Indeed, both the contour integration method or the partial fraction decomposition method work here. Integrating, we have



J(u,v)=π2{(u+v)log(u+v)uloguvlogv}.



Plugging this to (4), it follows that




I=64π3π20sin2θlogsinθdθ=16π3βz(32,12)



where β(z,w) is the beta function, satisfying the following beta function identity



β(z,w)=20sin2z1θcos2w1θdθ=Γ(z)Γ(w)Γ(z+w).




Therefore we have



I=16π3Γ(32)Γ(12)Γ(2){ψ0(2)ψ0(32)}=8π210xx1xdx=8(2log21)π2,



where ψ0(z)=Γ(z)Γ(z) is the digamma function, satisfying the following identity




ψ0(z+1)=γ+101xz1xdx.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...