Tuesday, 13 September 2016

summation - Compute a sum involving binomial coefficients

Let $0 < a < b$ and $p_1 >0$ and $p_2>0$ be integers. The question is to prove the following identity:



\begin{equation}
\sum\limits_{j=a}^b
\left(\begin{array}{c} j \\ p_1 \end{array} \right)
\left(\begin{array}{c} j \\ p_2 \end{array} \right)
=

\sum\limits_{q=0}^{p_2} (-1)^{q+1}
\left[
\left(\begin{array}{c} a+q \\ p_1+q+1 \end{array} \right)
\left(\begin{array}{c} a \\ p_2-q \end{array} \right)
-
\left(\begin{array}{c} b+1+q \\ p_1+q+1 \end{array} \right)
\left(\begin{array}{c} b+1 \\ p_2-q \end{array} \right)
\right]
\end{equation}




Can this identity be generalised for $p_1,p_2$ being real?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...