Prove or disapprove the statement:
$$f(n)=\Theta(f(\frac{n}{2}))$$
where $f$ is an asymptotically positive function.
I have thought the following:
Let $f(n)=\Theta(f(\frac{n}{2}))$.Then $\exists c_1,c_2>0 \text{ and } n_0 \geq 1 \text{ such that } \forall n \geq n_0:$
$$c_1 f(\frac{n}{2}) \leq f(n) \leq c_2 f(\frac{n}{2})$$
Let $f(n)=2^n$.Then:
$$c_1 2^{\frac{n}{2}} \leq 2^n \leq c_2 2^{\frac{n}{2}} \Rightarrow c_1 \leq 2^{\frac{n}{2}} \leq c_2 $$
$$2^{\frac{n}{2}} \leq c_2 \Rightarrow 2^n \leq c_2^2 \Rightarrow n \leq \lg c_2^2 \text{ Contradiction}$$
Could you tell me if it is right?
Answer
As mentioned in the comments, your work is correct (and thus the original proposition is false).
No comments:
Post a Comment