Friday, 24 February 2017

number theory - Computing $22^{201} mod (30)$



I am having trouble, I tried using the fact that the $gcd(30, 22) = 2$ but I have been stuck here for a bit now.



$22^{201} \equiv x \mod (30)$




$22^{201} \equiv 22*22^{200} mod (30)$



How can I proceed?


Answer



We have $22^2=484\equiv 4\pmod{30}$
Then $4^3\equiv 4\pmod{30}$ and this means $22^6\equiv 4\pmod{30}$ and $201=33\times 6+3$ so $22^{201}=(22^6)^{33}+22^3$. This gives $$22^{201}\equiv 4^{33}\times 22^3\pmod{30}$$ Using the above $4^{33}\equiv 4^{11}\equiv (4^3)^{3}\times 4^2\equiv 4$ and $22^3\equiv4\times22\equiv 28\pmod{30}$ and we can conclude that $$22^{201}\equiv 4\times 28\equiv -8\equiv 22 \pmod{30}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...