Monday, 20 February 2017

Differentiability implies continuous derivative?

We know differentiability implies continuity, and in 2 independent variables cases both partial derivatives fx and fy must be continuous functions in order for the primary function f(x,y) to be defined as differentiable.



However in the case of 1 independent variable, is it possible for a function f(x) to be differentiable throughout an interval R but it's derivative f ' (x) is not continuous?

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...