How do I evaluate this without using Taylor expansion?
$$\lim_{x \to \infty}x^2\log\left(\frac {x+1}{x}\right)-x$$
Note: I used Taylor expansion at $z=0$ and I have got $\frac{-1}{2}$
Thank you for any help
How do I evaluate this without using Taylor expansion?
$$\lim_{x \to \infty}x^2\log\left(\frac {x+1}{x}\right)-x$$
Note: I used Taylor expansion at $z=0$ and I have got $\frac{-1}{2}$
Thank you for any help
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment