Problem
Evaluate
limx→0+[xsinx−(sinx)xx3+lnx6].
Attempt
First, we may obtain
limx→0+[xsinx−(sinx)xx3+lnx6]=limx→0+6esinxlnx−6exlnsinx+x3lnx6x3.
Here, you can apply L'Hôpital's rule, but it's too complicated. Moreover, you can also apply Taylor's formula, for example
esinxlnx=1+sinxlnx+12(sinxlnx)2+⋯,exlnsinx=1+xlnsinx+12(xlnsinx)2+⋯,
but you cannot cancel the terms, thus you cannot avoid differentiating, either. Is there any elegant solution?
P.S. Please don't suspect the existence of the limit. The result equals 16.
Answer
The key point is that xlogsinx→0 and sinxlogx→0 then by Taylor's series we have
- xsinx=esinxlogx=1+xlogx+12x2log2x+16x3logx(log2x−1)+O(x4log2x)
- (sinx)x=exlog(sinx)=1+xlogx+12x2log2x+16x3(log3x−1)+O(x4logx)
then
xsinx−(sinx)xx3+lnx6=16x3log3x−16x3logx−16x3log3x+16x3+O(x4logx)x3+lnx6=
=16+O(xlogx)→16
To see how obtain the Taylor's expansion, let consider the first one, then since
- sinx=x−16x3+O(x5)⟹sinxlogx=xlogx−16x3logx+O(x5logx)
- et=1+t+12t2+16t3+O(t4)
we obtain that
xsinx=esinxlogx=1+(xlogx−16x3logx+O(x5logx))+12(xlogx−16x3logx+O(x5logx))2+16(xlogx−16x3logx+O(x5logx))3+O(x5log4x)=
=1+xlogx−16x3logx+12x2log2x−16x4log2x+16x3log3x+O(x4log2x)=
=1+xlogx+12x2log2x+16x3logx(log2x−1)+O(x4log2x)
and for the second one since
- log(1+t)=t−12t2+13t3+O(t4)
- sinx=x−16x3+O(x5)⟹sinxx=1−16x2+O(x4)
- logsinx=logx+logsinxx=logx+log(1−16x2+O(x4))=logx−16x2+O(x4)
- xlogsinx=xlogx−16x3+O(x5)
we obtain that
(sinx)x=exlogsinx=1+(xlogx−16x3+O(x5))+12(xlogx−16x3+O(x5))2+16(xlogx−16x3+O(x5))3+O(x4log4x)
=1+xlogx−16x3+12x2log2x−16x4logx+16x3log3x+O(x4logx)=
=1+xlogx+12x2log2x+16x3(log3x−1)+O(x4logx)
No comments:
Post a Comment