Saturday, 11 February 2017

calculus - Evaluate limlimitsxto0+left[fracxsinx(sinx)xx3+fraclnx6right].



Problem



Evaluate
limx0+[xsinx(sinx)xx3+lnx6].



Attempt




First, we may obtain
limx0+[xsinx(sinx)xx3+lnx6]=limx0+6esinxlnx6exlnsinx+x3lnx6x3.


Here, you can apply L'Hôpital's rule, but it's too complicated. Moreover, you can also apply Taylor's formula, for example
esinxlnx=1+sinxlnx+12(sinxlnx)2+,exlnsinx=1+xlnsinx+12(xlnsinx)2+,

but you cannot cancel the terms, thus you cannot avoid differentiating, either. Is there any elegant solution?



P.S. Please don't suspect the existence of the limit. The result equals 16.


Answer



The key point is that xlogsinx0 and sinxlogx0 then by Taylor's series we have





  • xsinx=esinxlogx=1+xlogx+12x2log2x+16x3logx(log2x1)+O(x4log2x)

  • (sinx)x=exlog(sinx)=1+xlogx+12x2log2x+16x3(log3x1)+O(x4logx)



then



xsinx(sinx)xx3+lnx6=16x3log3x16x3logx16x3log3x+16x3+O(x4logx)x3+lnx6=



=16+O(xlogx)16







To see how obtain the Taylor's expansion, let consider the first one, then since




  • sinx=x16x3+O(x5)sinxlogx=xlogx16x3logx+O(x5logx)

  • et=1+t+12t2+16t3+O(t4)




we obtain that



xsinx=esinxlogx=1+(xlogx16x3logx+O(x5logx))+12(xlogx16x3logx+O(x5logx))2+16(xlogx16x3logx+O(x5logx))3+O(x5log4x)=



=1+xlogx16x3logx+12x2log2x16x4log2x+16x3log3x+O(x4log2x)=



=1+xlogx+12x2log2x+16x3logx(log2x1)+O(x4log2x)



and for the second one since





  • log(1+t)=t12t2+13t3+O(t4)

  • sinx=x16x3+O(x5)sinxx=116x2+O(x4)

  • logsinx=logx+logsinxx=logx+log(116x2+O(x4))=logx16x2+O(x4)

  • xlogsinx=xlogx16x3+O(x5)



we obtain that




(sinx)x=exlogsinx=1+(xlogx16x3+O(x5))+12(xlogx16x3+O(x5))2+16(xlogx16x3+O(x5))3+O(x4log4x)



=1+xlogx16x3+12x2log2x16x4logx+16x3log3x+O(x4logx)=



=1+xlogx+12x2log2x+16x3(log3x1)+O(x4logx)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...