Is there a simpler expression for the following sum? (n∈N)
S_n =\binom{n}{0}\binom{n}{1} + \binom{n}{1}\binom{n}{2} + \dots + \binom{n}{n-1}\binom{n}{n}
It seems like S_n = \binom{2n}{n-1}, however I have no clue as to how I can prove that relation. I also tried re-writing the sum as
S_n = \binom{n}{0}\binom{n}{n-1} + \binom{n}{1}\binom{n}{n-2} + \dots + \binom{n}{n-1}\binom{n}{0} = \sum^{n-1}_{j=0}\binom{n}{j}\binom{n}{n-j-1}
Which resembles a special case of Vandemonde's Identity. Is there a connection between the two?
Friday, 24 February 2017
sequences and series - Evaluating sumn−1j=0binomnjbinomnj+1
Subscribe to:
Post Comments (Atom)
real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Ok, according to some notes I have, the following is true for a random variable X that can only take on positive values, i.e P(X \int_0^...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
The question said: Use the Euclidean Algorithm to find gcd (1207,569) and write (1207,569) as an integer linear combination of 1207 ...
No comments:
Post a Comment