Sunday, 26 February 2017

calculus - Find $ limlimits_{n rightarrow infty} int_{0}^{1} left(1+ frac{x}{n}right)^n dx$


Find the limit of



$$ \lim\limits_{n \rightarrow \infty} \int_{0}^{1} \left(1+ \frac{x}{n}\right)^n dx$$




Let $$u= 1 +\frac{x}{n} \implies du =\frac{1}{n} dx \implies n \cdot du = dx$$
at $x=0$ $u=1$ and at $x=1$ $u=1+\frac{1}{n}$ so now limit will change from $1$ to $1+\frac{1}{n}$



Back to the integral




$$ \lim\limits_{n \rightarrow \infty} \left( n \cdot \int_{1}^{1+\frac{1}{n}} u^n du \right)= \lim\limits_{n \rightarrow \infty} \left( n \cdot \left[ \frac{nu^{n+1}}{n+1} \right]_1^{1+\frac{1}{n}} \right) = \lim\limits_{n \rightarrow \infty} \left(\frac{n^2}{n+1} \left[ u^{n+1} \right]_1^{1+\frac{1}{n}} \right) $$



$$\implies\lim\limits_{n \rightarrow \infty} \left(\frac{n^2}{n+1} \left[ \left(1+\frac{1}{n} \right)^{n+1}-1 \right] \right)=\infty$$



Is my finding correct? Is the procedure of taking the limit before completing the integration correct?



Much appreciated

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...