Wednesday, 22 February 2017

real analysis - Find the radius of convergence of power series



Suppose that k=0akxk has radius of convergence of R(0,).



a) Find the radius of convergence of k=0akx2k




b) Find the radius of convergence of k=0a2kxk



Attempt: Given (lim



Then \left(\lim_{k \rightarrow \infty} \frac{\left|a_k\right|^\frac{1}{2k}}{\left|a_{k+1}\right|^\frac{1}{2k}}\right) = \left(\lim_{k \rightarrow \infty} \frac{\left|a_k\right|^\frac{1}{k}}{\left|a_{k+1}\right|^\frac{1}{k}}\right)^\frac{1}{2} = R^\frac{1}{2}



and



\left(\lim_{k \rightarrow \infty} \frac{\left|a_k^2\right|^\frac{1}{k}}{\left|a_{k+1}^2\right|^\frac{1}{k}}\right)= \left(\lim_{k \rightarrow \infty} \frac{\left|a_k\right|^\frac{1}{k}}{\left|a_{k+1}\right|^\frac{1}{k}}\right)^\frac{1}{2} =\left(\lim_{k \rightarrow \infty} \frac{\left|a_k\right|^\frac{1}{2k}}{\left|a_{k+1}\right|^\frac{1}{2k}}\right) = \left(\lim_{k \rightarrow \infty} \frac{\left|a_k \right|^\frac{1}{k}}{\left|a_{k+1}\right|^\frac{1}{k}}\right)^2 = R^2




Is this correct? Can anyone please help me? Any suggestion feedback would be really appreciate it. Thank you.


Answer



Let a be the function in a), note that a(x) = f(x^2). Hence the series is absolutely convergent iff |x^2| < R iff |x| < \sqrt{R}. Hence the
radius of convergence is \sqrt{R}.



Note that you can't assume that the ratio test applies. For example, if every third a_n is zero then the limit is not defined.



For b), we have {1 \over R} = \limsup_n \sqrt[n]{|a_n|}. Then
\limsup_n \sqrt[n]{|a_n|^2} = \limsup_n (\sqrt[n]{|a_n|})^2 = (\limsup_n \sqrt[n]{|a_n|})^2 ={1 \over R^2}. Hence the

radius of convergence is R^2.



Addendum:



To justify the exchange of \limsup and squaring, suppose A \subset \mathbb{R} and \phi: \overline{A} \to \mathbb{R} is non increasing and continuous. Then \phi(\sup A) = \sup \phi(A).



Suppose a \in A, then a \le \sup A and so \phi(a) \le \phi(\sup A), which
gives \sup \phi(A) \le \phi(\sup A).



Now suppose a_n \uparrow \sup A, with a_n \in A. Then \phi(a_n) \le \phi(\sup A). Continuity gives \phi(\sup A) \le \sup \phi(A).




In the above, A = \{ \sqrt[n]{|a_n|} \}_n and \phi(x) = x^2.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...