Monday, 20 February 2017

continuity - Real Analysis Continuous Function Problem

Show that the only continuous function on $(-1,+1)$, which is not identically
zero and satisfies the equation $f(x + y) = f(x)f(y)$ for all $x,y \in \mathbb{R}$, is the exponential function $f(x) = a^x$ with $a = f(1) > 0$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...