Monday, 20 February 2017

calculus - Evaluate $lim_limits{x to 0} (1 +sin^2 x)^{frac{1}{ln(cos x)}}$



$$\lim_{x \to 0} (1 + \sin^2 x)^{\frac{1}{\ln(\cos x)}}$$



I evaluated $\sin$ and $\cos x$ but what can be done with $\ln\left(1-\frac{x^2}{2}\right)$ or $\ln\left(\frac{2 - x^2}{2}\right)$?



Assume that L'Hopital is forbidden but you can use asymptotic simplifications like big and small $o$ notations and Taylor series.


Answer



You can write the function as




$$(1 + \sin^2 x)^{ \frac{1}{\sin^2 x} \frac{\sin^2x}{\ln(\cos x)}}$$
Further



$$\frac{\sin^2x}{\ln(\cos x)}=\frac{x^2+o(x^2)}{\ln(1-\frac{x^2}{2}+o(x^2))}=\frac{x^2+o(x^2)}{-\frac{x^2}{2}+o(x^2)}\to-2$$



And



$$(1 + \sin^2 x)^{ \frac{1}{\sin^2 x} } \to e$$



Hence...



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...