Monday, 20 February 2017

calculus - Evaluate limlimitsxto0(1+sin2x)frac1ln(cosx)



lim



I evaluated \sin and \cos x but what can be done with \ln\left(1-\frac{x^2}{2}\right) or \ln\left(\frac{2 - x^2}{2}\right)?



Assume that L'Hopital is forbidden but you can use asymptotic simplifications like big and small o notations and Taylor series.


Answer



You can write the function as




(1 + \sin^2 x)^{ \frac{1}{\sin^2 x} \frac{\sin^2x}{\ln(\cos x)}}
Further



\frac{\sin^2x}{\ln(\cos x)}=\frac{x^2+o(x^2)}{\ln(1-\frac{x^2}{2}+o(x^2))}=\frac{x^2+o(x^2)}{-\frac{x^2}{2}+o(x^2)}\to-2



And



(1 + \sin^2 x)^{ \frac{1}{\sin^2 x} } \to e



Hence...



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...