Saturday, 8 April 2017

measure theory - Dominated by convergent sequence of functions



Suppose, $f_n,g_n$ are measurable functions on a measure space $(\Omega,\mathcal{A},\mu)$, satisfying $|f_n|\le g_n\forall n$. Given, $f_n\xrightarrow{a.e.}f$, $g_n\xrightarrow{a.e.}g$ and $\int g_n\rightarrow \int g <\infty$



I have to show that $\int f_n \rightarrow \int f$



Using Fatou's lemma, I can show that $\liminf\int f_n = \int f$ but I am stuck with the $\limsup$ direction.




Can someone please point me in the right direction? Any help regarding this appreciated.


Answer



First note that for all sufficiently large $n$, $f_n$ are integrable. Consequently, $f$ is integrable.



Now $\left|f_n\right| \leq g_n$ implies that $-g_n \leq f_n \leq g_n$. By Fatou's lemma,
\begin{align*}
\int f d \mu - \int (-g) d\mu = & \int \lim_n(f_n - (-g_n)) d \mu \\
\leq &\liminf_n \int(f_n - (-g_n)) d \mu = \liminf_n \int f_n d\mu + \int g d\mu
\end{align*}
and

\begin{align*}
\int g d \mu - \int f d\mu = & \int \lim_n(g_n - f_n) d \mu \\
\leq &\liminf_n \int(g_n - f_n) d \mu = \int g d\mu - \limsup_n\int f_n d\mu
\end{align*}
Therefore
$$\limsup_n \int f_n d\mu \leq \int f d \mu \leq \liminf_n \int f_n d\mu.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...