Monday, 28 October 2019

calculus - Multiple integrals involving product of gamma functions

The following integral was posted a few days back on Integrals and Series forum:

2π02π02π0dk1dk2dk3113(cosk1+cosk2+cosk3)=64Γ(124)Γ(524)Γ(724)Γ(1124)



I am curious if there is a closed form solution for:



[0,2π]ndk1dk2dk3dkn11n(cosk1+cosk2+cosk3++coskn)






Since |cosk1+cosk2+cosk33|<1,




2π02π02π0dk1dk2dk3113(cosk1+cosk2+cosk3)
=8π0π0π0dk1dk2dk3113(cosk1+cosk2+cosk3)
=8n=013nπ0π0π0(cosk1+cosk2+cosk3)ndk1dk2dk3



We can ignore the odd values of n as the integral is zero for them. Also, for even values of n, the exponents of cosines in the expansion of (cosk1+cosk2+cosk3)2n must be even. Hence, from multinomial therem, we can write:



8n=0m1+m2+m3=n132n(2n)!(2m1)!(2m2)!(2m3)!π0π0π0cos2m1k1cos2m2k2cos2m3k3dk1dk2dk3



=16n=0m1+m2+m3=n132n(2n)!(2m1)!(2m2)!(2m3)!π/20π/20π/20cos2m1k1cos2m2k2cos2m3k3dk1dk2dk3




Using the result: π/20cos2kxdx=(2k)!4k(k!)2π2, the integral is,



2π3n=0m1+m2+m3=n136n(2n)!(m1!)2(m2!)2(m3!)2



I am stuck here.



Any help is appreciated. Thanks!

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...