How to integrate
∞∫0e−ax2cos(bx)dx
where a>0
The real problem is this integral
lim
I tried integration by parts and then the change of variable z=x^2 but it does not work.
Answer
Using Euler's identity, we get:
\int\limits_0^\infty e^{-a x^2}\cos(b x) dx=Re \left( \int\limits_0^\infty e^{-a x^2} e^{ibx} dx \right)
\int\limits_0^\infty e^{-a x^2} e^{ibx} dx = \int\limits_0^\infty e^{-a x^2+ibx} dx
Let's forget about imaginary unit and take ib=\beta for simplicity:
-ax^2+\beta x=-a (x^2-\frac{\beta}{a}x+\frac{\beta^2}{4a^2})+\frac{\beta^2}{4a}=-a(x-\frac{\beta}{2a})^2+\frac{\beta^2}{4a}
\int\limits_0^\infty e^{-a x^2+\beta x} dx=e^{\frac{\beta^2}{4a}} \int\limits_0^\infty e^{-a(x-\frac{\beta}{2a})^2} dx
I believe you will not have trouble with the rest.
Hints:
dx=d(x-\frac{\beta}{2a})
\beta^2=-b^2.
No comments:
Post a Comment