How to integrate
$$\int\limits_0^\infty e^{-a x^2}\cos(b x) dx$$
where $a>0$
The real problem is this integral
$$\lim\limits_{\alpha\rightarrow 2}\int\limits_0^\infty e^{-a x^\alpha}\cos(b x) dx$$
I tried integration by parts and then the change of variable $z=x^2$ but it does not work.
Answer
Using Euler's identity, we get:
$$
\int\limits_0^\infty e^{-a x^2}\cos(b x) dx=Re \left( \int\limits_0^\infty e^{-a x^2} e^{ibx} dx \right)
$$
$$
\int\limits_0^\infty e^{-a x^2} e^{ibx} dx = \int\limits_0^\infty e^{-a x^2+ibx} dx
$$
Let's forget about imaginary unit and take $ib=\beta$ for simplicity:
$$
-ax^2+\beta x=-a (x^2-\frac{\beta}{a}x+\frac{\beta^2}{4a^2})+\frac{\beta^2}{4a}=-a(x-\frac{\beta}{2a})^2+\frac{\beta^2}{4a}
$$
$$
\int\limits_0^\infty e^{-a x^2+\beta x} dx=e^{\frac{\beta^2}{4a}} \int\limits_0^\infty e^{-a(x-\frac{\beta}{2a})^2} dx
$$
I believe you will not have trouble with the rest.
Hints:
$dx=d(x-\frac{\beta}{2a})$
$\beta^2=-b^2$.
No comments:
Post a Comment