Wednesday, 30 October 2019

integration - How to integrate intlimitsi0nftyeax2cos(bx)dx where a>0



How to integrate



0eax2cos(bx)dx




where a>0



The real problem is this integral



lim



I tried integration by parts and then the change of variable z=x^2 but it does not work.


Answer



Using Euler's identity, we get:




\int\limits_0^\infty e^{-a x^2}\cos(b x) dx=Re \left( \int\limits_0^\infty e^{-a x^2} e^{ibx} dx \right)



\int\limits_0^\infty e^{-a x^2} e^{ibx} dx = \int\limits_0^\infty e^{-a x^2+ibx} dx



Let's forget about imaginary unit and take ib=\beta for simplicity:




-ax^2+\beta x=-a (x^2-\frac{\beta}{a}x+\frac{\beta^2}{4a^2})+\frac{\beta^2}{4a}=-a(x-\frac{\beta}{2a})^2+\frac{\beta^2}{4a}



\int\limits_0^\infty e^{-a x^2+\beta x} dx=e^{\frac{\beta^2}{4a}} \int\limits_0^\infty e^{-a(x-\frac{\beta}{2a})^2} dx



I believe you will not have trouble with the rest.




Hints:



dx=d(x-\frac{\beta}{2a})



\beta^2=-b^2.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...