Wednesday, 30 October 2019

integration - How to integrate $intlimits_0^infty e^{-a x^2}cos(b x) dx$ where $a>0$



How to integrate



$$\int\limits_0^\infty e^{-a x^2}\cos(b x) dx$$




where $a>0$



The real problem is this integral



$$\lim\limits_{\alpha\rightarrow 2}\int\limits_0^\infty e^{-a x^\alpha}\cos(b x) dx$$



I tried integration by parts and then the change of variable $z=x^2$ but it does not work.


Answer



Using Euler's identity, we get:




$$
\int\limits_0^\infty e^{-a x^2}\cos(b x) dx=Re \left( \int\limits_0^\infty e^{-a x^2} e^{ibx} dx \right)
$$



$$
\int\limits_0^\infty e^{-a x^2} e^{ibx} dx = \int\limits_0^\infty e^{-a x^2+ibx} dx
$$



Let's forget about imaginary unit and take $ib=\beta$ for simplicity:




$$
-ax^2+\beta x=-a (x^2-\frac{\beta}{a}x+\frac{\beta^2}{4a^2})+\frac{\beta^2}{4a}=-a(x-\frac{\beta}{2a})^2+\frac{\beta^2}{4a}
$$



$$
\int\limits_0^\infty e^{-a x^2+\beta x} dx=e^{\frac{\beta^2}{4a}} \int\limits_0^\infty e^{-a(x-\frac{\beta}{2a})^2} dx
$$



I believe you will not have trouble with the rest.




Hints:



$dx=d(x-\frac{\beta}{2a})$



$\beta^2=-b^2$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...