Tuesday, 15 October 2019

summation - induction proof: $sum_{k=1}^nk^2 = frac{n(n+1)(2n+1)}{6}$




I encountered the following induction proof on a practice exam for calculus:



$$\sum_{k=1}^nk^2 = \frac{n(n+1)(2n+1)}{6}$$



I have to prove this statement with induction.



Can anyone please help me with this proof?



Answer



If $P(n): \sum_{k=1}^nk^2 = \frac{n(n+1)(2n+1)}{6},$



we see $P(1): 1^2=1$ and $\frac{1(1+1)(2\cdot1+1)}{6}=1$ so, $P(1)$ is true



Let $P(m)$ is true, $$\sum_{k=1}^mk^2 = \frac{m(m+1)(2m+1)}{6}$$



For $P(m+1),$



$$ \frac{m(m+1)(2m+1)}{6}+(m+1)^2$$




$$=\frac{m(m+1)(2m+1)+6(m+1)^2}6$$



$$=\frac{(m+1)\{m(2m+1)+6(m+1)\}}6$$



$$=\frac{(m+1)(m+2)\{2(m+1)+1\}}6$$ as $m(2m+1)+6(m+1)=2m^2+7m+6=(m+2)(2m+3)$



So, $P(m+1)$ is true if $P(m)$ is true


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...