I encountered the following induction proof on a practice exam for calculus:
n∑k=1k2=n(n+1)(2n+1)6
I have to prove this statement with induction.
Can anyone please help me with this proof?
Answer
If P(n):∑nk=1k2=n(n+1)(2n+1)6,
we see P(1):12=1 and 1(1+1)(2⋅1+1)6=1 so, P(1) is true
Let P(m) is true, m∑k=1k2=m(m+1)(2m+1)6
For P(m+1),
m(m+1)(2m+1)6+(m+1)2
=m(m+1)(2m+1)+6(m+1)26
=(m+1){m(2m+1)+6(m+1)}6
=(m+1)(m+2){2(m+1)+1}6 as m(2m+1)+6(m+1)=2m2+7m+6=(m+2)(2m+3)
So, P(m+1) is true if P(m) is true
No comments:
Post a Comment