Tuesday, 15 October 2019

summation - induction proof: sumnk=1k2=fracn(n+1)(2n+1)6




I encountered the following induction proof on a practice exam for calculus:



nk=1k2=n(n+1)(2n+1)6



I have to prove this statement with induction.



Can anyone please help me with this proof?



Answer



If P(n):nk=1k2=n(n+1)(2n+1)6,



we see P(1):12=1 and 1(1+1)(21+1)6=1 so, P(1) is true



Let P(m) is true, mk=1k2=m(m+1)(2m+1)6



For P(m+1),



m(m+1)(2m+1)6+(m+1)2




=m(m+1)(2m+1)+6(m+1)26



=(m+1){m(2m+1)+6(m+1)}6



=(m+1)(m+2){2(m+1)+1}6 as m(2m+1)+6(m+1)=2m2+7m+6=(m+2)(2m+3)



So, P(m+1) is true if P(m) is true


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...