Let (Ω,A,μ) be a measure space with finite μ. Let f,fn:Ω→¯R be a A−measurable function (n∈N).
For every ε>0,
limn→∞μ(⋃m≥nx∈Ω:fm(x)>f(x)+ε))=0
it means we may choose an integer N large enough so that
μ(⋃m≥N{x∈Ω:fm(x)>f(x)+ε))})<δ?
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment