Thursday, 31 October 2019

Limit $lim_{x rightarrow infty, y rightarrow infty} left( frac{xy}{x^2 + y^2}right)^{x^2} $

Given the followning limit:
$$ \lim_{x \rightarrow \infty, y \rightarrow \infty} \left( \frac{xy}{x^2 + y^2}\right)^{x^2} $$



To find limit I have made following steps:




  1. Let $ x = y $ ,then limit equals $0$

  2. Let $ x > y $ ,then consider the limit:




$$ \lim_{x \rightarrow \infty, y \rightarrow \infty} \left( \frac{x^2}{x^2 + y^2}\right)^{x^2} = \lim_{x \rightarrow \infty, y \rightarrow \infty} \left( \frac{1}{1 + \frac{y^2}{x^2}}\right)^{x^2} = 0$$
with respect to $$0 < y^2/x^2 < const$$




  1. Let $ y > x $ ,then consider the limit:



$$ \lim_{x \rightarrow \infty, y \rightarrow \infty} \left( \frac{x^2}{x^2 + y^2}\right)^{y^2} = \lim_{x \rightarrow \infty, y \rightarrow \infty} \left( \frac{1}{\frac{x^2}{y^2} + 1}\right)^{x^2} = 0$$
with respect to $$0 < x^2/y^2 < const$$




What could you say about my solution?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...