Tuesday, 8 October 2019

integration - Calculating improper integral intlimitsinfty0fracmathrmexsqrtx,mathrmdx





I want to calculate the improper integral 0exxdx




Therefore
\begin{align}
I(b)&=\lim\limits_{b\to0}\left(\displaystyle \int \limits_{b}^{\infty}\dfrac{\mathrm{e}^{-x}}{\sqrt{x}}\,\mathrm{d}x\right) \qquad \forall b\in\mathbb{R}:0
&=\lim\limits_{b\to0}\left(\sqrt{\pi} \erf(\sqrt{b}) \right)=\sqrt{\pi}\erf(\sqrt{0})=\sqrt{\pi}
\end{align}



This looks way to easy. Is this correct or am I missing something? Do you know a better way while using the following equation from our lectures?: 0ex2dx=12π


Answer



Hint:



Just substitute x=u2. So, you get
0exxdx=20eu2du


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...