I want to calculate the improper integral ∞∫0e−x√xdx
Therefore
\begin{align}
I(b)&=\lim\limits_{b\to0}\left(\displaystyle \int \limits_{b}^{\infty}\dfrac{\mathrm{e}^{-x}}{\sqrt{x}}\,\mathrm{d}x\right) \qquad \forall b\in\mathbb{R}:0
&=\lim\limits_{b\to0}\left(\sqrt{\pi} \erf(\sqrt{b}) \right)=\sqrt{\pi}\erf(\sqrt{0})=\sqrt{\pi}
\end{align}
This looks way to easy. Is this correct or am I missing something? Do you know a better way while using the following equation from our lectures?: ∞∫0e−x2dx=12√π
Answer
Hint:
Just substitute x=u2. So, you get
∞∫0e−x√xdx=2∫∞0e−u2du
No comments:
Post a Comment