Tuesday, 8 October 2019

complex analysis - Prove that $lim_{R rightarrow infty} int_{sigma_1}f(z) dz=0$.

Let $$f(z)=\frac{e^{\pi iz}}{z^2-2z+2}$$
and $\gamma_R$ is the closed contour made up by the semi-circular contour $\sigma_1$ given by, $\sigma_1(t)=Re^{it}$, and the straight line $\gamma_2$ from $-R$ to $R$ (so the contour of $\gamma_R$ appears to be a semi circle).




Prove that $$\lim_{R \rightarrow \infty} \int_{\sigma_1}f(z) dz=0.$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...