Tuesday, 29 October 2019

math induction of sin(x)-sin(3x)...

how would you use induction to prove this:



$\sin(x)-sin(3x)+sin(5x)-...+(-1)^{(n+1)}sin[(2n-1)x] = \frac{(-1)^{(n+1)}sin2nx}{2cosx} $



I know how you assume its true for n=k, and then prove for n=k+1, but I get to




Left Hand Side: $\frac{(-1)^{(k+1)}sin2kx}{2cosx}+(-1)^{k+2}sin[(2k+1)x]$ but I'm not sure what step to take next.



any help would be appreciated.
Cheers

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...