Saturday, 5 October 2019

real analysis - A problem related to intermediate value property of continuous function.










Let $f:[0,1] \to R$ be a real valued continuous function satisfying $f(0)=f(1)$. Then using intermediate value theorem we know for every $n \in N$ there exist two point $a,b \in [0,1]$ at a distance $1/n$ satisfying $f(a)=f(b)$.



Now my question is, for every $r\in [0,1]$ is it possible to find two points $a,b\in [0,1]$ at a distance $r$, satisfying $f(a)=f(b)$ provided $f:[0,1] \to R$ be a real valued continuous function satisfying $f(0)=f(1)$.




as there is a counterexample for $r>1/2$, please consider the case when $r<1/2$.


Answer



Hint: Consider $r=\frac23$ and
$$f(x)=\begin{cases}x&\mathrm{if\ }x\le \frac13\\
1-2x &\mathrm{if\ } \frac13x-1 &\mathrm{if\ }x\ge\frac23
\end{cases}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...