Suppose that lim, \lim\limits_{n\rightarrow \infty} |\frac{b_{n+1}}{b_n}| = \frac{1}{\beta} and \alpha > \beta. Does it implies that \lim\limits_{n\rightarrow \infty} |\frac{a_n}{b_n}| = 0 ?
I think it is correct because the condition means that increasing rate of b_n greater than increasing rate of a_n. Then \lim\limits_{n\rightarrow \infty} |\frac{a_n}{b_n}| = 0 no matter what initial value a_0 and b_0 are given.
Answer
We show that |b_n/a_n|\to 0 if and only if \alpha<\beta.
If. Indeed, to be meaningful, it means that \alpha,\beta>0. Fix \varepsilon>0, hence there exists n_0=n_0(\varepsilon)>0 such that
|a_{n+1}|\ge \left(\frac{1}{\alpha}-\varepsilon\right)|a_n| \,\,\text{ and }\,\,|b_{n+1}|\le \left(\frac{1}{\beta}+\varepsilon\right)|b_n|
for all n\ge n_0. This implies
\left|\frac{b_n}{a_n}\right|\le \frac{\frac{1}{\beta}+\varepsilon}{\frac{1}{\alpha}-\varepsilon}\,\cdot \,\left|\frac{b_{n-1}}{a_{n-1}}\right|\le \cdots \le \left(\frac{\frac{1}{\beta}+\varepsilon}{\frac{1}{\alpha}-\varepsilon}\right)^{n-n_0}\,\cdot \,\left|\frac{b_{n_0}}{a_{n_0}}\right|
In particular, if \alpha<\beta, set \varepsilon:=\frac{1/\alpha-1/\beta}{3} then
\frac{\frac{1}{\beta}+\varepsilon}{\frac{1}{\alpha}-\varepsilon}<1 \implies \lim_{n\to \infty}\left|\frac{b_n}{a_n}\right|=0.
Only if. If \alpha \ge \beta then set a_n:=\alpha^{-n} and b_n:=\beta^{-n} for all n. Hence
\left|\frac{b_n}{a_n}\right|= \left(\frac{\alpha}{\beta}\right)^n\ge 1
for all n, so it does not converge to 0.
No comments:
Post a Comment