Saturday, 6 July 2013

calculus - Integrate $int sin(sqrt{at}),dt$




Integrate $$\int \sin(\sqrt{at})\,dt$$




Here is what I tried.




Let $u=\sqrt{at}$, then $\displaystyle\ du=\frac{a}{2\sqrt{at}}dt=\frac{a}{2u}dt\implies \frac{2udu}{a}=dt.$ So by subsitution,



$$\displaystyle \int \sin(\sqrt{at})dt=\int\sin(u)\left(\frac{2udu}{a}\right)=\frac{2}{a}\int u \sin(u)du.$$



Again substituting, $v=u\implies dv=du, dw=\sin(u)du\implies w=-\cos(u)$. So



$$\displaystyle\begin{align} \frac{2}{a}\int\ u\sin(u)du &= -u\cos(u)+\int\cos(u)du\\
&=-u\cos(u)+\sin(u)+C\\
&=-\sqrt{at}\cos(\sqrt{at})+\sin(\sqrt{at})+C\\

\int u\sin(u)du&=\frac{a}{2}\left(-\sqrt{at}\cos(\sqrt{at})+\sin(\sqrt{at})\right).\\
\end{align}$$



But the answer is $\displaystyle\frac{2}{a}\left(-\sqrt{at}\cos(\sqrt{at})+\sin(\sqrt{at})\right)$. Where did I go wrong here?


Answer



Your mistake is when you write
$$\displaystyle\begin{align} \frac{2}{a}\int\ u\sin(u)du &= -u\cos(u)+\int\cos(u)du\\
&=-u\cos(u)+\sin(u)+C\\
&=-\sqrt{at}\cos(\sqrt{at})+\sin(\sqrt{at})+C\\
\int u\sin(u)du&=\frac{a}{2}\left(-\sqrt{at}\cos(\sqrt{at})+\sin(\sqrt{at})\right).\\

\end{align}$$ It is rather
$$\displaystyle\begin{align} \frac{2}{a}\int\ u\sin(u)du &= \color{red}{\frac{2}{a}}\left(-u\cos(u)+\int\cos(u)du\right)\\
&=\color{red}{\frac{2}{a}}\left(-u\cos(u)+\sin(u)+C\right)\\
&=\color{red}{\frac{2}{a}}\left(-\sqrt{at}\cos(\sqrt{at})+\sin(\sqrt{at})+C\right)
\end{align}
$$ giving at the end the right answer.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...