Saturday, 6 July 2013

calculus - How to calculate this expression?



evaluate the expression [1]:
$$\sum\limits_{n = 1}^\infty {\left( {\frac{1}{n} - \frac{1}{{n + x}}} \right)} $$




where $x$ is a real number, $0\le x\le1$, and $x$ is rounded to 3 digits.



For example, when $x=0.500$, the expression is [2]:



$$\left(\frac11 -\frac1{1.5}\right)+\left(\frac12 -\frac1{2.5}\right)+\left(\frac13 -\frac 1{3.5}\right) + ...$$



For a given $x$, how can I evaluate it?
The answer must be rounded to more than 12 digits.


Answer




$$\sum\limits_{n = 1}^\infty {\left( {\frac{1}{n} - \frac{1}{{n + x}}} \right)}=\sum\limits_{n = 1}^\infty \frac{x}{n(n+x)}$$



It is known that the sum is



$$\sum\limits_{n = 1}^\infty \frac{x}{n(n+x)}=\psi(x+1)+\gamma$$



where $\psi$ is the digamma function



$\gamma$ is the Euler constant .




Added :



We can easily prove that for $x=0.5$ we have



$$\psi(1.5)=2-\gamma -\log(4)$$



Hence the sum is equal to



$$2-\log(4)$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...