Tuesday, 7 January 2014

functional equations - Find all functions $f(f(f(...(f(x_1,x_2),x_3),...),x_{2016}))=x_1+x_2+...+x_{2016}$



I am trying to solve the functional equation:




Find all functions $f:\mathbb R^2\rightarrow \mathbb R$ such that for all $\left \{x_1,x_2,...,x_{2016} \right \}\subset \mathbb R$:
$$f(f(f(...(f(x_1,x_2),x_3),...),x_{2016}))=x_1+x_2+...+x_{2016}$$





My work so far:



$f(x,y)=f(0+0+..+0+x,y)$



$f(f(f(...(f(0,0),0),...),x),y)=0+0+...+0+x+y=x+y$



I need help here.


Answer



So lets assume $f$ is a real function an




$$f(f(f(\ldots f(f(x_1,x_2),x_3)\ldots),x_{2016})= x_1+x_2+\ldots + x_{2016} \tag{1}$$



We now apply



$$f(.,x_{2017}) \tag{2}$$



on the LHS and RHS of $(1)$ and we get



$$f( f(f(f(\ldots f(f(x_1,x_2),x_3)\ldots),x_{2016}) ,x_{2017}) = f(x_1+x_2+\ldots + x_{2016},x_{2017}) \tag{3}$$




If we change the variable names in $(1)$ , $x_{i}$ by $x_{i+1}$, we get



$$f(f(f(\ldots f(f(x_2,x_3),x_4)\ldots),x_{2017})= x_2+x_3+\ldots + x_{2017} \tag{4}$$



In $(4)$ now we substitute $x_2$ by $f(x_1,x_2)$ and get



$$f(f(f(\ldots f(f( f(x_1,x_2) ,x_3),x_4)\ldots),x_{2017})= f(x_1,x_2) +x_3+\ldots + x_{2017} \tag{5}$$



The LHS of $(3)$ and $(5)$ are the same. So the RHS of $(3)$ and $(5)$ must be equal and we get




$$f(x_1+x_2+\ldots + x_{2016},x_{2017}) = f(x_1,x_2) +x_3+\ldots + x_{2017} \tag{6}$$



Here we set $x_1=0$, $x_2=0$, ..., $x_{2015}=0$ and get



$$f(x_{2016},x_{2017})=f(0,0)+x_{2016}+x_{2017} \tag{7}$$



We can use $(7)$ to evaluate the nested function expression of the LHS of $(1)$. You can start with the outer or with the inner expression. Finally you will get



$$f( f(f(f(\ldots f(f(x_1,x_2),x_3)\ldots),x_{2016}) ,x_{2017})= 2015 f(0,0)+x_1+x_2+x_3+\cdots+x_{2016} \tag{8}$$




The RHS of $(1)$ and $(8)$ are equal, so ist must be



$$2015f(0,0)=0 \tag{9}$$



From $(9)$ and $(7)$ we see that



$$f(x,y)=x+y \tag{10}$$



as expected.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...