Saturday 24 May 2014

abstract algebra - Commutative binary operations on $Bbb C$ that distribute over both multiplication and addition



Does there exist a non-trivial commutative binary operation on $\Bbb C$ that distributes over both multiplication and addition?



In other words, if our operation is denoted by $\odot$, then I want the following to hold:




  1. $a \odot (b \cdot c) = a \odot b \cdot a \odot c$

  2. $a \odot (b + c) = a \odot b + a \odot c$

  3. $a \odot b = b \odot a$




All of the things I can find so far distribute over either multiplication or addition, but not both. Alternatively, is there a proof that no such operation can exist?



I wasn't sure if this question was too elementary for MO, so I'm trying here first. This question is obliquely related to the following other questions I've asked on MO and here:




Answer



One such operation is $a\odot b=0$ for all $a,b$. I claim this is the only such operation. Indeed, we have $$a\odot c=a\odot(1\cdot c)=(a\odot 1)\cdot (a\odot c).$$ Taking $c=1$ gives that $a\odot 1$ must be either $0$ or $1$ for each $a$. But if $a\odot 1=1$, then $(a+a)\odot 1=2$, which is impossible. So in fact $a\odot 1=0$ for all $a$, and now the equation above tells us $a\odot c=0$ for all $c$ as well.




This argument uses only the fact that $\odot$ distributes over multiplication on the left and $\odot$ distributes over addition on the right. With slight modification, it applies equally well with $\mathbb{C}$ replaced by any ring in which $2$ is not a zero divisor. Note that in arbitrary rings, there can be other such operations $\odot$. For instance, in a Boolean ring (in which $a\cdot a=a$ for all $a$), $a\odot b=a\cdot b$ is such an operation.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...