Thursday, 15 May 2014

elementary set theory - Does k+aleph0=mathfrakc imply k=mathfrakc without the Axiom of Choice?




I'm currently reading a little deeper into the Axiom of Choice, and I'm pleasantly surprised to find it makes the arithmetic of infinite cardinals seem easy. With AC follows the Absorption Law of Cardinal Arithmetic, which states that for κ and λ cardinal numbers, the larger infinite and the smaller nonzero, then κ+λ=κλ=max(κ,λ).



I was playing around with the equation k+0=c for some cardinal k. From the above, it follows that c=k+0=max(k,0), which implies k=c.



I'm curious, can we still show k=c without the Axiom of Choice? Is it maybe possible to bound c0 above and below by c? But then I'm not quite sure such algebraic manipulations even mean anything, or work like that here. Certainly normal arithmetic does not! Thanks.


Answer



There is a general argument without choice: Suppose m+m=m, and m+n=2m. Then n=2m. This gives the result.





The argument is part of a nice result
of Specker showing that if CH holds
for both a cardinal m
and its power set 2m,
then 2m is
well-orderable. This shows that GCH
implies choice, and that the proof is
"local". It is still open whether CH
for m implies that
m is well-orderable.





Anyway, here is the proof of the statement above: Note first that 2m2m=2m+m=2m=m+n.



Let X and Y be disjoint sets with |X|=m, |Y|=n, and fix a bijection f:P(X)×P(X)XY.



Note that there must be an AX such that the preimage f1(X) misses the fiber {A}×P(X). Otherwise, the map that to aX assigns the unique AX such that f1(a) is in {A}×P(X) is onto, against Cantor's theorem.



But then, for any such A, letting g(B)=f(A,B) gives us an injection of P(X) into Y, i.e., 2mn. Since the reverse inclusion also holds, we are done by Schroeder-Bernstein.




(Note the similarity to Apostolos's and Joriki's answers.)



The original reference for Specker's result is Ernst Specker, "Verallgemeinerte Kontinuumshypothese und Auswahlaxiom", Archiv der Mathematik 5 (1954), 332–337. A modern presentation is in Akihiro Kanamori, David Pincus, "Does GCH imply AC locally?", in "Paul Erdős and his mathematics, II (Budapest, 1999)", Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, (2002), 413–426.




Note that assuming that m is infinite is not enough for the
result. For example, it is consistent
that there are infinite Dedekind
finite sets X such that P(X) is also Dedekind finite. To be
Dedekind finite means that any proper

subset is strictly smaller. But if
2m is Dedekind finite
and 2m=n+l for nonzero
cardinals n,l, then we must have
n,l<2m.



No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...