Wednesday, 14 May 2014

logarithms - Limit of log with factor



Problem



If $$\lim_{n \rightarrow \infty} f(n) - \log n - \log \log n = y$$ where $f$ is some function, does this imply that
$$ \lim_{n \rightarrow \infty} f(n) - \log (xn) - \log \log n = y$$ for some $x \in O(1)$? Or does this give another Limit $y$?



Progress



For $y=0$ or $y= \pm \infty$, I think, this factor $x$ should not change anything, but for $y\in (-\infty,0) \cup (0,\infty)$, I think this Limit should change, shouldn't it?



Answer



Notice that



$$\log(xn)=\log x+\log n$$
so the limit is the same if $y=\pm\infty$ and it becomes $y+\log x$ if $y\in\Bbb R$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...