Sunday, 25 May 2014

elementary number theory - $gcd (ca, cb) = gcd (a, b)c$ if $c > 0$




Let $\gcd (a, b) = d$. So, $ax + by = d$ for some $x, y$. Then $(ca)x + (cb)y = cd$. Thus, $\gcd (ca, cb) = cd = \gcd(a, b)c$.



Does it work?


Answer




No. The problem is that $ax+by = d$ does not imply $\gcd(a,b) = d$.



The statement $\gcd(ca,cb) = c\gcd(a,b)$ is true, however. To see that note that



$\gcd(a,b) \mid a \wedge \gcd(a,b) \mid b \implies c\gcd(a,b) \mid ac \wedge c\gcd(a,b) \mid bc$ so
$$\gcd(ac,bc) \mid c\gcd(a,b)$$



The reverse is a little bit more work (you need $\gcd(ac,bc) \mid c\gcd(a,b)$ to conclude).


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...