Tuesday, 27 May 2014

integration - Solve an integral intfraccos3xsin3x+cos3xdx



Solve an integral cos3xsin3x+cos3xdx



I tried to divide the numerator and denominator by cos4x to get secx function but the term sin3x/cos4x gives tan2xsec2xsinx. How to get rid of sinx term?


Answer




I wasn't really able to come up with a better (elegant) method other than the following:



cos3xsin3x+cos3xdx=11+tan3xdx



Now, using the substitution, t=tanxdt1+t2=dx, we get



=1(1+t2)(1+t3)dt



Decomposing it into partial fraction (copying from W|A):




=16(t+1)+t+12(t2+1)2t13(t2t+1)dt=16lnt+14ln(t2+1)+12arctant13ln(t2t+1)+C



Substituting back t=tanx



16lntanx+12lnsecx13ln(sec2xtanx)+x2+C


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...