Solve an integral ∫cos3xsin3x+cos3xdx
I tried to divide the numerator and denominator by cos4x to get secx function but the term sin3x/cos4x gives tan2xsec2xsinx. How to get rid of sinx term?
Answer
I wasn't really able to come up with a better (elegant) method other than the following:
∫cos3xsin3x+cos3xdx=∫11+tan3xdx
Now, using the substitution, t=tanx⟹dt1+t2=dx, we get
=∫1(1+t2)(1+t3)dt
Decomposing it into partial fraction (copying from W|A):
=∫16(t+1)+t+12(t2+1)−2t−13(t2−t+1)dt=16lnt+14ln(t2+1)+12arctant−13ln(t2−t+1)+C
Substituting back t=tanx
16lntanx+12lnsecx−13ln(sec2x−tanx)+x2+C
No comments:
Post a Comment