Wednesday, 21 May 2014

calculus - Evaluate: intinfty0left(x23x+1right)exln3(x)dx



I=0(x23x+1)exln3(x)dx



ex=n=0(x)nn!



I=n=0(1)nn!0(x23x+1)xnln3(x)dx



J=(x23x+1)xnln3(x)dx




We can evaluate J by integration by parts but problem, the limits does not work.



How to evaluate integral I?


Answer



Here's a way that only requires the identity Γ(1)=γ , since all derivatives of higher order cancel:
I=0(x23x+1)ln3(x)exdx=[d2dt2+3ddt+1]0ln3(x)etxdx |t=1=[d2dt2+3ddt+1]1t0[ln3(y)3ln2(y)ln(t)+3ln(y)ln2(t)ln3(t)]eydy |t=1=[d2dt2+3ddt+1]1t[Γ



In fact, integration by parts yields the following generalisation:
\begin{align} \gamma &= \int \limits_0^\infty (-\ln (x)) \mathrm{e}^{-x} \, \mathrm{d} x = \int \limits_0^\infty \frac{-\ln (x)}{x} x \mathrm{e}^{-x} \, \mathrm{d} x \\ &= \int \limits_0^\infty (-\ln (x))^2 \frac{1-x}{2} \mathrm{e}^{-x} \, \mathrm{d} x \\ &= \int \limits_0^\infty (-\ln (x))^3 \frac{x^2 - 3x +1}{6} \mathrm{e}^{-x} \, \mathrm{d} x \\ &= \dots \, \\ &= \int \limits_0^\infty (-\ln (x))^{n+1} \frac{p_n (x)}{(n+1)!} \mathrm{e}^{-x} \, \mathrm{d} x \, . \end{align}
The polynomials p_n are defined recursively by p_0(x) = 1 and
p_n (x) = \mathrm{e}^{x} \frac{\mathrm{d}}{\mathrm{d}x} \left(x p_{n-1} (x) \mathrm{e}^{-x}\right) \, , \, n \in \mathbb{N} \, ,
for x \in \mathbb{R} . The exponential generating function
\sum \limits_{n=0}^\infty \frac{p_n(x)}{n!} t^n = \mathrm{e}^{t+x(1-\mathrm{e}^t)}
can actually be computed from a PDE and it turns out that the polynomials are given by
p_n(x) = \frac{B_{n+1}(-x)}{-x} \, , \, x \in \mathbb{R} \, , \, n \in \mathbb{N}_0 \, ,

where (B_k)_{k \in \mathbb{N}_0} are the Bell or Touchard polynomials.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...