Wednesday, 11 February 2015

calculus - Evaluate the limit of the sequence: $lim_{n_toinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}$



Evaluate the limit of the sequence:



$$\lim_{n\to\infty}\frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})}$$







My try:



Stolz-cesaro: The limit of the sequence is $\frac{\infty}{\infty}$



$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$



For our sequence:



$\lim_{n\to\infty}\frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})}=\lim_{n\to\infty}\frac{\sqrt{n!}-\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})\cdot(1+\sqrt{n+1})-(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})}=\lim_{n\to\infty}\frac{\sqrt{(n-1)!}\cdot(\sqrt{n-1})}{\left((1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})\right)\cdot(\sqrt{n}+1)}$




Which got me nowhere.


Answer



Consider:
$$
(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})
$$



Take the root from each pair of parentheses and multiply them, then:
$$

(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n}) > \sqrt{n!} \iff \\
\iff \frac{1}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})} < \frac{1}{\sqrt{n!}}
$$

Going back to original we have that:
$$
\frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdot(1+\sqrt{2})\cdot (1+\sqrt{3})\cdots (1+\sqrt{n})} \le \frac{\sqrt{(n-1)!}}{\sqrt{n!}} = \frac{1}{\sqrt n}
$$



But the function is greater than $0$ and hence using squeeze theorem we conclude that:
$$

0 \le \lim_{n\to\infty}x_n \le \lim_{n\to\infty}\frac{1}{\sqrt n} = 0
$$



Hence the limit is $0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...